8 research outputs found

    On Implementing Temporal Query Answering in DL-Lite

    Get PDF
    Ontology-based data access augments classical query answering over fact bases by adopting the open-world assumption and by including domain knowledge provided by an ontology. We implemented temporal query answering w.r.t. ontologies formulated in the Description Logic DL-Lite. Focusing on temporal conjunctive queries (TCQs), which combine conjunctive queries via the operators of propositional linear temporal logic, we regard three approaches for answering them: an iterative algorithm that considers all data available; a window-based algorithm; and a rewriting approach, which translates the TCQs to be answered into SQL queries. Since the relevant ontological knowledge is already encoded into the latter queries, they can be answered by a standard database system. Our evaluation especially shows that implementations of both the iterative and the window-based algorithm answer TCQs within a few milliseconds, and that the former achieves a constant performance, even if data is growing over time

    Finite-sample frequency distributions originating from an equiprobability distribution

    Full text link
    Given an equidistribution for probabilities p(i)=1/N, i=1..N. What is the expected corresponding rank ordered frequency distribution f(i), i=1..N, if an ensemble of M events is drawn?Comment: 4 pages, 4 figure

    supervised by:

    No full text
    Ich versichere an Eides statt, dass ich die vorliegende Projektarbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit wurde in dieser oder ähnlicher Form noch keiner Prüfungskommission vorgelegt. Hamburg, de

    On Implementing Temporal Query Answering in DL-Lite

    Get PDF
    Ontology-based data access augments classical query answering over fact bases by adopting the open-world assumption and by including domain knowledge provided by an ontology. We implemented temporal query answering w.r.t. ontologies formulated in the Description Logic DL-Lite. Focusing on temporal conjunctive queries (TCQs), which combine conjunctive queries via the operators of propositional linear temporal logic, we regard three approaches for answering them: an iterative algorithm that considers all data available; a window-based algorithm; and a rewriting approach, which translates the TCQs to be answered into SQL queries. Since the relevant ontological knowledge is already encoded into the latter queries, they can be answered by a standard database system. Our evaluation especially shows that implementations of both the iterative and the window-based algorithm answer TCQs within a few milliseconds, and that the former achieves a constant performance, even if data is growing over time

    On Implementing Temporal Query Answering in DL-Lite

    No full text
    Ontology-based data access augments classical query answering over fact bases by adopting the open-world assumption and by including domain knowledge provided by an ontology. We implemented temporal query answering w.r.t. ontologies formulated in the Description Logic DL-Lite. Focusing on temporal conjunctive queries (TCQs), which combine conjunctive queries via the operators of propositional linear temporal logic, we regard three approaches for answering them: an iterative algorithm that considers all data available; a window-based algorithm; and a rewriting approach, which translates the TCQs to be answered into SQL queries. Since the relevant ontological knowledge is already encoded into the latter queries, they can be answered by a standard database system. Our evaluation especially shows that implementations of both the iterative and the window-based algorithm answer TCQs within a few milliseconds, and that the former achieves a constant performance, even if data is growing over time
    corecore